Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Atmosphere ; 14(4):698, 2023.
Article in English | ProQuest Central | ID: covidwho-2297382

ABSTRACT

Airborne transmission via aerosol particles without close human contact is a possible source of infection with airborne viruses such as SARS-CoV-2 or influenza. Reducing this indirect infection risk, which is mostly present indoors, requires wearing adequate respiratory masks, the inactivation of the viruses with radiation or electric charges, filtering of the room air, or supplying ambient air by means of ventilation systems or open windows. For rooms without heating, ventilation, and air conditioning (HVAC) systems, mobile air cleaners are a possibility for filtering out aerosol particles and therefore lowering the probability of indirect infections. The main questions are as follows: (1) How effectively do mobile air cleaners filter the air in a room? (2) What are the parameters that influence this efficiency? (3) Are there room situations that completely prevent the air cleaner from filtering the air? (4) Does the air cleaner flow make the stay in the room uncomfortable? To answer these questions, particle imaging methods were employed. Particle image velocimetry (PIV) was used to determine the flow field in the proximity of the air cleaner inlet and outlet to assess regions of unpleasant air movements. The filtering efficiency was quantified by means of particle image counting as a measure for the particle concentration at multiple locations in the room simultaneously. Moreover, different room occupancies and room geometries were investigated. Our results confirm that mobile air cleaners are suitable devices for reducing the viral load indoors. Elongated room geometries, e.g., hallways, lead to a reduced filtering efficiency, which needs to be compensated by increasing the volume flow rate of the device or by deploying multiple smaller devices. As compared to an empty room, a room occupied with desks, desk separation walls, and people does not change the filtering efficiency significantly, i.e., the change was less than 10%. Finally, the flow induced by the investigated mobile air cleaner does not reach uncomfortable levels, as by defined room comfort standards under these conditions, while at the same time reaching air exchange rates above 6, a value which is recommended for potentially infectious environments.

2.
Journal of Geophysical Research Atmospheres ; 128(6), 2023.
Article in English | ProQuest Central | ID: covidwho-2257703

ABSTRACT

The radiative effects of the large‐scale air traffic slowdown during April and May 2020 due to the international response to the COVID‐19 pandemic are estimated by comparing the coverage (CC), optical properties, and radiative forcing of persistent linear contrails over the conterminous United States and two surrounding oceanic air corridors during the slowdown period and a similar baseline period during 2018 and 2019 when air traffic was unrestricted. The detected CC during the slowdown period decreased by an area‐averaged mean of 41% for the three analysis boxes. The retrieved contrail optical properties were mostly similar for both periods. Total shortwave contrail radiative forcings (CRFs) during the slowdown were 34% and 42% smaller for Terra and Aqua, respectively. The corresponding differences for longwave CRF were 33% for Terra and 40% for Aqua. To account for the impact of any changes in the atmospheric environment between baseline and slowdown periods on detected CC amounts, the contrail formation potential (CFP) was computed from reanalysis data. In addition, a filtered CFP (fCFP) was also developed to account for factors that may affect contrail formation and visibility of persistent contrails in satellite imagery. The CFP and fCFP were combined with air traffic data to create empirical models that estimated CC during the baseline and slowdown periods and were compared to the detected CC. The models confirm that decreases in CC and radiative forcing during the slowdown period were mostly due to the reduction in air traffic, and partly due to environmental changes.Alternate :Plain Language SummaryContrails produced by aircraft flying in cold but humid air both warm the atmosphere by reducing infrared radiation emitted back into space and cool it by increasing reflected sunlight. Due to the decrease in air traffic during the first months of the COVID pandemic, fewer satellite‐detectable contrails were produced compared to pre‐pandemic times, and thus the radiative effects of contrails were also diminished. But changes in the overall temperature and humidity at aircraft cruise altitudes also affect contrail formation and might explain at least some of the observed decrease in contrail coverage during April and May 2020. Analysis of satellite imagery showed that the thickness and ice‐crystal size of the contrails during the COVID period did not change much from pre‐pandemic contrails. The regional contrail coverage was accurately simulated from a combination of the estimated air traffic activity at cruise altitude and the probable frequency of when atmospheric conditions were favorable for contrail formation. This simulation confirms that most of the decrease in contrails and their radiative effects during the COVID‐related slowdown period were due to the reduction in air traffic, and to a lesser extent to changes in temperature and humidity at cruise altitude during April and May 2020.

3.
Izvestiya. Atmospheric and Oceanic Physics, suppl. 1 ; 58:S42-S51, 2022.
Article in English | ProQuest Central | ID: covidwho-2280569

ABSTRACT

In this paper we consider the effect of heliogeophysical activity on the COVID-19 epidemic associated with the spread of the SARS-CoV-2 coronavirus in Moscow. An analysis of official data on the course of the pandemic has provided evidence of the effect of heliogeophysical activity on the spread of an infectious disease. The pandemic arose during the winter when solar activity was minimal and ultraviolet radiation was at its lowest. The study showed a significant relation between the infectious process and geomagnetic activity: periods of outbreaks in the number of infections and deaths correlated with periods of a decrease in geomagnetic activity lasting several months. The impact of magnetospheric storms and substorms on the human body during a pandemic is also considered. It is shown that, during the minimum of solar activity during periods of geomagnetic disturbances lasting from one to several days, both the number of infections and the number of deaths additionally and statistically significantly increase. Evidence of a direct or indirect effect of solar activity on the occurrence of outbreaks of infectious diseases is important from the viewpoint of understanding the emergence and development of epidemics.

4.
Meteorology and Atmospheric Physics ; 134(6), 2022.
Article in English | ProQuest Central | ID: covidwho-2059862

ABSTRACT

This study seeks to understand and quantify the changes in tropospheric ozone (O3) in lower troposphere (LT), middle troposphere (MT) and upper middle troposphere (UMT) over the Indo-Gangetic Plains (IGPs), India during the COVID-19 lockdown 2020 with that of pre-lockdown 2019. The gridded datasets of ozone from the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis product, ERA5 in combination with statistical interpolated (IDWs) surface NO2 observations, present a consistent picture and indicate a significant tropospheric ozone enhancement over IGP during COVID-19 lockdown restrictions in May 2020. The Paper also examines the influencing role of meteorological parameters on increasing ozone concentration. Over LT, an increase in O3 concentration (23%) is observed and in MT to UMT an enhancement of about 9–18% in O3 concentration have been seen during May 2020 with respect to May 2019. An investigation on causes of increasing  ozone concentration (35–85 ppbv) from MT to UMT during May 2020 reveals that there was significant rise (by 1–6%) in low cloud cover (LCC). Notably, higher LCC increases the backscattering of upward solar radiation from the top of the atmosphere. A positive difference of 5–25 W/m2 in upward solar radiation (USR) is observed across the entire study region. The result suggests that higher LCC significantly contributed to the enhanced USR. Thereby, resulting in higher photolysis rate that lead to an increase in mid tropospheric ozone concentration during May 2020. The results highlight the importance of LCC as an important pathway in ozone formation and aid in scientific understanding of it.

5.
Journal of Geophysical Research. Space Physics ; 127(9), 2022.
Article in English | ProQuest Central | ID: covidwho-2050273

ABSTRACT

We present a low‐altitude satellite survey of power line harmonic radiation (PLHR) at 50 Hz over Mainland China. We analyzed the month‐to‐month variation pattern in PLHR occurrence rate and further analyzed its correlation with some influencing factors (i.e., solar radiation, lightning flashes, and electricity consumption) using CSES satellite electric field data from 2019 to 2021. We also investigate the response of PLHR occurrence rate to COVID‐19. The statistical results show the dayside PLHR occurrence rate decreasing from winter to summer solstice and increasing from summer to winter solstice, which indicates it is controlled by the solar radiation. The nightside variation is more complex, which may be due to many sources that could influence the nightside lower ionosphere. The PLHR occurrence rate significantly decreased over Mainland China in February 2020, which is because of the significant decrease in electricity consumption due to the suspension of industrial production caused by COVID‐19.Alternate :Plain Language SummaryPower line harmonic radiation (PLHR) is the electromagnetic waves radiated by electric power systems at harmonic frequencies of 50 or 60 Hz, depending on the frequency of the system on the ground. Previous research mainly focuses on identification of individual PLHR events and their subsequent analysis. However, the number of base‐frequency PLHR signal events is the most abundant, which is suitable for the statistical study of PLHR occurrence rate and its variation pattern, and further study of the factors affecting its variation pattern. In this paper, we use 3 years of electric field data from the China Seismo‐Electromagnetic Satellite (CSES) which is an LEO satellite launched into orbit in February 2018 to investigate the month‐to‐month variation pattern of PLHR occurrence rate over Mainland China and its correlation with the influencing factors. The response of PLHR occurrence rate to COVID‐19 are also investigated.

6.
Atmospheric Chemistry and Physics ; 22(16):10919-10935, 2022.
Article in English | ProQuest Central | ID: covidwho-2025098

ABSTRACT

Around 5 % of anthropogenic radiative forcing (RF) is attributed to aviation CO2 and non-CO2 impacts. This paper quantifies aviation emissions and contrail climate forcing in the North Atlantic, one of the world's busiest air traffic corridors, over 5 years. Between 2016 and 2019, growth in CO2 (+3.13% yr-1) and nitrogen oxide emissions (+4.5 % yr-1) outpaced increases in flight distance (+3.05 % yr-1). Over the same period, the annual mean contrail cirrus net RF (204–280 mW m-2) showed significant inter-annual variability caused by variations in meteorology. Responses to COVID-19 caused significant reductions in flight distance travelled (-66%), CO2 emissions (-71%) and the contrail net RF (-66%) compared with the prior 1-year period. Around 12 % of all flights in this region cause 80 % of the annual contrail energy forcing, and the factors associated with strongly warming/cooling contrails include seasonal changes in meteorology and radiation, time of day, background cloud fields, and engine-specific non-volatile particulate matter (nvPM) emissions. Strongly warming contrails in this region are generally formed in wintertime, close to the tropopause, between 15:00 and 04:00 UTC, and above low-level clouds. The most strongly cooling contrails occur in the spring, in the upper troposphere, between 06:00 and 15:00 UTC, and without lower-level clouds. Uncertainty in the contrail cirrus net RF (216–238 mW m-2) arising from meteorology in 2019 is smaller than the inter-annual variability. The contrail RF estimates are most sensitive to the humidity fields, followed by nvPM emissions and aircraft mass assumptions. This longitudinal evaluation of aviation contrail impacts contributes a quantified understanding of inter-annual variability and informs strategies for contrail mitigation.

7.
Earth System Science Data ; 14(7):3423-3438, 2022.
Article in English | ProQuest Central | ID: covidwho-1964339

ABSTRACT

Uncrewed Systems (UxS), including uncrewed aerial systems (UAS) and tethered balloon/kite systems (TBS), are significantly expanding observational capabilities in atmospheric science. Rapid adaptation of these platforms and the advancement of miniaturized instruments have resulted in an expanding number of datasets captured under various environmental conditions by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility. In 2021, observational data collected using ARM UxS platforms, including seven TigerShark UAS flights and 133 tethered balloon system (TBS) flights, were archived by the ARM Data Center (https://adc.arm.gov/discovery/#/, last access: 11 February 2022) and made publicly available at no cost for all registered users (10.5439/1846798) (Mei and Dexheimer, 2022). These data streams provide new perspectives on spatial variability of atmospheric and surface parameters, helping to address critical science questions in Earth system science research. This paper describes the DOE UAS/TBS datasets, including information on the acquisition, collection, and quality control processes, and highlights the potential scientific contributions using UAS and TBS platforms.

8.
Bulletin of the American Meteorological Society ; 103(2):103-105, 2022.
Article in English | ProQuest Central | ID: covidwho-1892031

ABSTRACT

Within this context, fundamental questions regarding the life cycle of convective clouds, aerosols, and pollutants have brought together a diverse, integrated, and interagency collaboration of scientists to collect and analyze measurements, in the Houston, Texas, area, from the summer of 2021 through the summer of 2022, with subsequent modeling studies to address these important research objectives. The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Facility and Atmospheric System Research (ASR) Program, the National Science Foundation’s (NSF’s) Physical and Dynamic Meteorology Program, the National Aeronautics and Space Administration’s (NASA’s) Tropospheric Composition Research and Health and Air Quality Applied Sciences Programs and the Texas Commission on Environmental Quality (TCEQ) are collaborating on a joint set of field campaigns to study the interactions of cloud, aerosol, and pollutants within the coastal, urban environment. Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). On the ground, multiple fixed and mobile radar systems (Fig. 1a) will be used to track convective cells and perform multi-Doppler analysis for the derivation of velocities within the convective systems over the course of their life cycle.

9.
Journal of Earth System Science ; 131(2), 2022.
Article in English | ProQuest Central | ID: covidwho-1877958

ABSTRACT

The COVID-19 epidemic-led lockdown (LD) from March 25 to May 31, 2020, had a different level of impact on air quality in the ecologically sensitive region of northeast India, even though the restriction on main anthropogenic activities was expected to reduce particulate matter concentration. The daily average black carbon concentration measured at 880 nm (BC880) was 1.5–15.6 μg m−3 (mean: 5.75±4.24 μg m−3) during the measurement period. It was 9.29±4.11 μg m−3 during pre-LD (February 12–March 21), 4.70±0.95 μg m−3 during LD1 (March 25–April 14), 3.41±0.56 μg m−3 during LD2 (April 15–May 3), 3.69±1.50 μg m−3 during LD3 (May 4–17), 2.94±0.93 μg m−3 during LD4 (May 18–31), and 6.56±5.35 μg m−3 during the Post-LD (June 6–July 3) of 2020. It decreased up to 68% during the lockdowns. The source apportionment based on an improved method showed a significant improvement in the contribution of BC880 sources. The radiation effect determined by Angstrom Absorption Exponent showed that brown carbon accounted for 25% of the aerosol light absorption at 370 nm during the lockdown period. Relative humidity correlates substantially with BC880, while rainfall, temperature, and solar radiation were negatively correlated. The bivariate analysis showed the dominance of local emissions in the BC880 concentrations.Research highlightsBlack carbon concentration decreased up to 68% during the different phases of lockdown.BC associated with fossil fuel was 51–78%, and biomass burning was 22–49%.The fraction of fossil fuel and biomass burning in whole BC fallen to 0.73 and 0.65 during the lockdowns.Air quality improved by about 47–58% on the 4th and 7th day of lockdown.Brown carbon and meteorological parameters significantly impacted aerosol light absorption in this region.

SELECTION OF CITATIONS
SEARCH DETAIL